Using Poultry Litter for Fertility on Pastures and Hayfields

Julia Gaskin, Sustainable Agriculture Coordinator
Agricultural Pollution Prevention Program
Biological & Agricultural Engineering Dept.
Cooperative Extension Service
University of Georgia

Characteristics of Poultry Litter

• "3-2-2"
 - Variance with type of bird, ration, # of growouts, feed efficiency, storage & handling

Characteristics of Poultry Litter

• Nitrogen both "available" and "unavailable"
 - Total nitrogen = 64 lbs/ton
 - Ammonium nitrogen = 10 lbs/ton
• Most N is organic form
• Has to be mineralized before plant available

Characteristics of Poultry Litter

• Ammonium-nitrogen (NH₄-N) "volatilized"
• Lost to the atmosphere
• Higher losses in hot, dry conditions

The Value of Litter

(2009 Prices)
60#N \times 0.50 \times 0.6 = 18.00
40#P₂O₅ \times 0.80 \times 0.8 = 25.60
40#K₂O \times 0.70 \times 0.8 = 22.40
Total = $66.00

STRATEGIES FOR TIGHT BUDGETS AND MINIMAL RISK

Using Poultry Litter for Fertility

Slow Release

- 80% organic N
- Released slowly over growing season

Cattle Gains

<table>
<thead>
<tr>
<th>Season of Year</th>
<th>Stocker Cattle Gain (lbs/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>IF > PL</td>
</tr>
<tr>
<td>Spring</td>
<td>IF > PL</td>
</tr>
<tr>
<td>Summer</td>
<td>IF > PL</td>
</tr>
<tr>
<td>Autumn</td>
<td>IF = PL</td>
</tr>
</tbody>
</table>

Franzuebbers AJ, and Stuedemann JA. USDA ARS. Phil Campbell, Sr. Natural Resource Center

Other Nutrients

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>43 lbs/ton</td>
</tr>
<tr>
<td>Magnesium</td>
<td>9 lbs/ton</td>
</tr>
<tr>
<td>Sulfur</td>
<td>15 lbs/ton</td>
</tr>
</tbody>
</table>

Micronutrients

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese</td>
<td>327 ppm</td>
</tr>
<tr>
<td>Copper</td>
<td>287 ppm</td>
</tr>
<tr>
<td>Zinc</td>
<td>262 ppm</td>
</tr>
</tbody>
</table>

Liming

- Calcium provides some liming value - about 1/10th strength of limestone
- NW Georgia after 4 years
 - PL at 4 t/acre pH = 5.76
 - NO₃-NH₄ (no lime) pH = 5.18
- NE Georgia after 5 years
 - PL at 4 t/acre pH = 6.0
 - NO₃-NH₄ + lime pH = 6.0

Organic Matter

- Does provide some organic matter
- Higher organic matter soils help prevent compaction
- Increasing infiltration into soil

Redbud Test Plots 2000 - 2003 Soils

Overapplication quickly increases soil test P to problem levels.
Notice increase in composted poultry litter.

Julia Gaskin,
University of Georgia
STRATEGIES FOR TIGHT BUDGETS AND MINIMAL RISK

Using Poultry Litter for Fertility

Redbud Test Plots 2000 – 2003 Water Quality

Overapplication creates potential for higher impacts to water quality

NPDES limit. Ecological limit 0.035 mg/L.

Will The “P Issue” Bog Us Down?

Litter Utilization

- Best Value = Straight from house
- # 2 = Cover with plastic or stackhouse

Timing and Amount of Application

Apply when plant needs it
Early application = Loss of N and K
Calibrate spreaders

Proper Use

- Do soil and litter testing
- Apply at agronomic rate
- Follow setbacks from sensitive areas
- Good neighbor relations

Weeds

Studies indicate no weed seeds in PL, BUT nutrients can stimulate weed growth
STRATEGIES FOR TIGHT BUDGETS AND MINIMAL RISK

Using Poultry Litter for Fertility

Importance of Mineral Supplements

<table>
<thead>
<tr>
<th>Nutrients in Poultry Litter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium</td>
<td>40 lbs/ton</td>
</tr>
<tr>
<td>Calcium</td>
<td>43 lbs/ton</td>
</tr>
<tr>
<td>Magnesium</td>
<td>9 lbs/ton</td>
</tr>
<tr>
<td>Sulfur</td>
<td>15 lbs/ton</td>
</tr>
</tbody>
</table>

Potential for grass tetany (Calcium/Magnesium)
Potential for copper deficiencies (Sulfur)
Need to use proper mineral supplements with any fertilization program!

AGRICULTURAL POLLUTION PREVENTION PROGRAM

Sponsored by the Georgia Pollution Prevention Assistance Division
www.agp2.org

Cooperative Extension Service
Biological & Agricultural Engineering Dept.
College of Agricultural & Environmental Sciences
University of Georgia