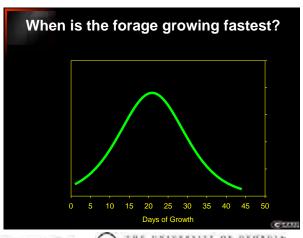
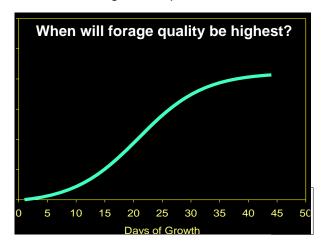

Manipulating forage growth and grazing behavior

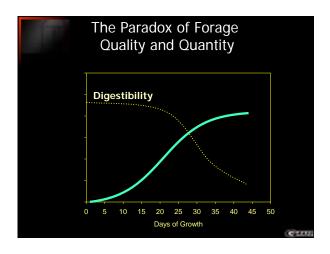

Dr. Dennis Hancock Prof. & Forage Ext. Specialist

School

Manipulating forage growth and grazing behavior

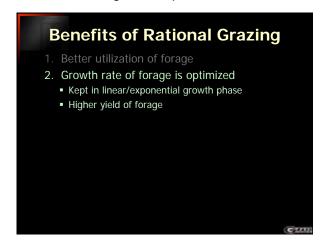

Available Forage (dry mass/unit area)

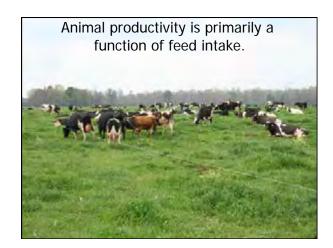
Available Forage (Dry mass/unit area)


Available Forage (Dry mass/unit area)

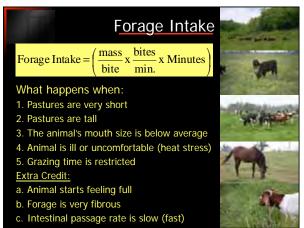
Days of Growth

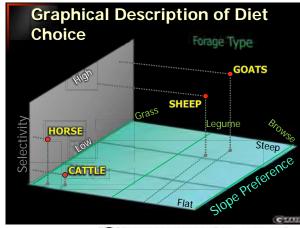
Dr. Dennis Hancock Prof. & Forage Ext. Specialist

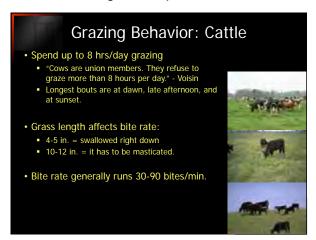


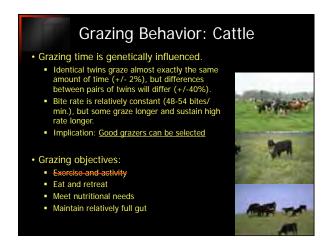


Manipulating forage growth and grazing behavior



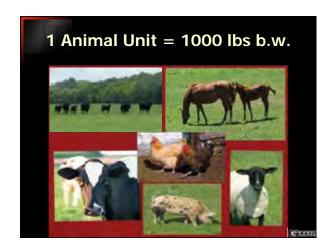

Dr. Dennis Hancock Prof. & Forage Ext. Specialist

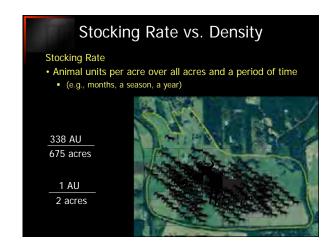


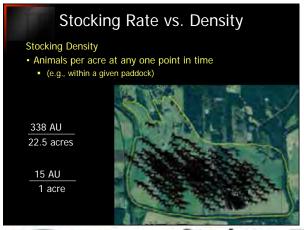


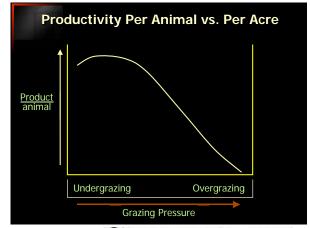
Manipulating forage growth and grazing behavior

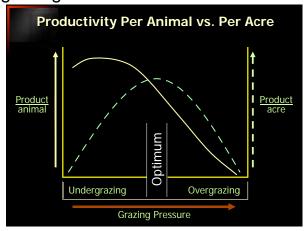
Dr. Dennis Hancock Prof. & Forage Ext. Specialist




Manipulating forage growth and grazing behavior

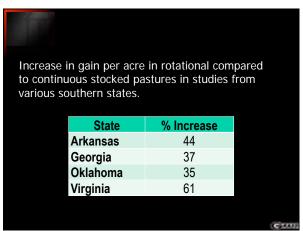



Dr. Dennis Hancock Prof. & Forage Ext. Specialist



Manipulating forage growth and grazing behavior

Dr. Dennis Hancock Prof. & Forage Ext. Specialist

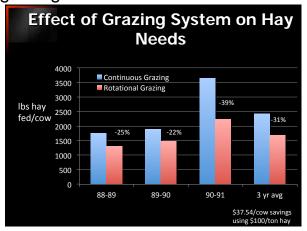

Benefits of Rational Grazing 1. Better utilization of forage 2. Growth rate of forage is optimized • Kept in linear/exponential growth phase • Higher yield of forage 3. Higher stocking rates

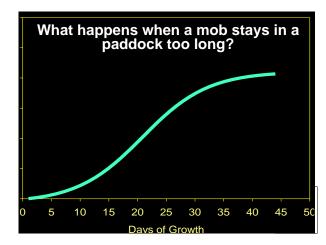
Benefits of Rational Grazing 1. Better utilization of forage 2. Growth rate of forage is optimized • Kept in linear/exponential growth phase • Higher yield of forage 3. Higher stocking rates 4. More animal gains/milk production per acre

Effects of rotational stocking on performance of beef cattle grazing bermudagrass and endophytefree tall fescue in central Georgia. Continuous Rotational Difference* Cow weight at calving, lbs 1037 1017 NS Cow weight at weaning, Ibs 1090 1071 NS 0.50 0.69 +38% Stocking rate, cows/acre Pregnancy rate, % 93 95 NS 490 486 NS Weaning weight, Ib Calf production, lb/ac 243 334 +37% NS = not statistically significant

Benefits of Rational Grazing

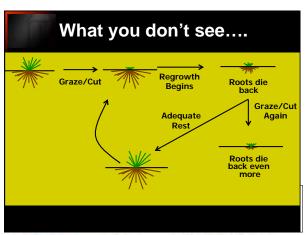

2. Growth rate of forage is optimized





ENVIRONMENTAL SCIENCES

Manipulating forage growth and grazing behavior



Dr. Dennis Hancock Prof. & Forage Ext. Specialist

Benefits of Rational Grazing 1. Better utilization of forage 2. Growth rate of forage is optimized • Kept in linear/exponential growth phase • Higher yield of forage 3. Higher stocking rates 4. More animal gains/milk production per acre 5. Reduced feeding of conserved forage or supplements 6. Better persistence of desirable forages • Especially clover and legume species

Manipulating forage growth and grazing behavior

Oruz	ing Rule	es of Thumb			
Сгор	Target Heig Begin Grazing		Recommended Rest Period (days)		
Alfalfa (grazing types)	10-16	2-4	15-30		
Annual Ryegrass	6-12	3-4	7-25		
Bahiagrass	6-10	1-2	10-20		
Bermudagrass	6-12	2-6	10-20		
Clover, White	6-8	1-3	7-15		
Clovers, Other	8-10	3-5	10-20		
Orchardgrass	8-12	3-6	15-30		
Pearl millet	20-24	8-12	10-20		
Small grains	8-12	4	7-30		
Sorghum/sudan	20-24	8-12	10-20		
Switchgrass	18-22	8-12	30-45		
Tall Fescue	4-8	2-3	15-30		

Dr. Dennis Hancock Prof. & Forage Ext. Specialist

Management of residual stubble height and rest period ("length of round") on carbohydrate storage in Tifton 85 stems/stolons.*

Stubble -	Rest Period or "Round"(d)				
Height	14	21	28		
in.		(g TNC/m²) -			
3					
6					

* Adapted from Liu et al., 2011. Crop Sci. TNC = Total non-structural carbohydrates.

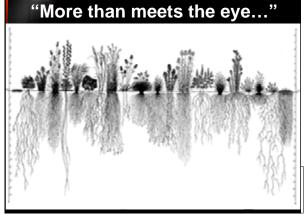
Management of residual stubble height and rest period ("length of round") on effective Tifton 85 **yields**.*

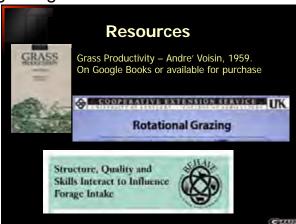
Stubble -	Rest Period or "Round"(d)				
Height	14	21	28		
in.		(lbs/acre)			
3					
6					
q					

* Adapted from Liu et al., 2011. Crop Sci. Yields are grazing season totals (3-yr avg.) and include only that forage above the managed residual stubble height. SH did not affect CP or IVOMD. Both CP and IVOMD dec. (L from 60.2% to 58.2%) as rest inc. from 14 to 28 d.

Benefits of Rational Grazing

- 1. Better utilization of forage
- 2. Growth rate of forage is optimized
 - Kept in linear/exponential growth phase
 - Higher yield of forage
- 3. Higher stocking rates
- 4. More animal gains/milk production per acre
- 5. Reduced feeding of conserved forage or supplements
- Better persistence of desirable forages
 - Especially clover and legume species
- 7. Better weed suppression





Manipulating forage growth and grazing behavior

Dr. Dennis Hancock Prof. & Forage Ext. Specialist

