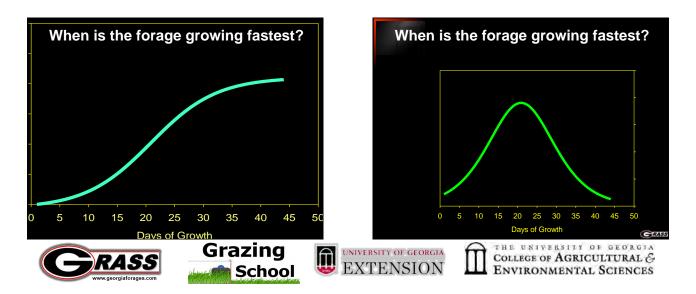
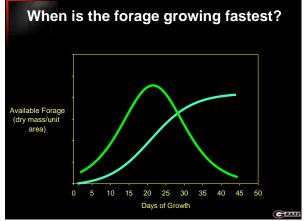
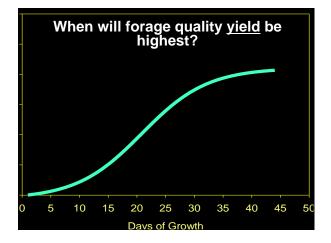
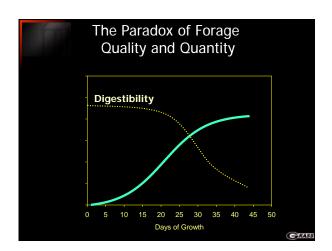

Manipulating forage growth and grazing behavior

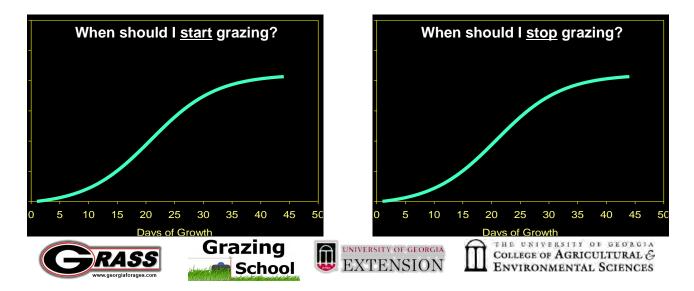


Dr. Dennis Hancock Prof. & Forage Ext. Specialist

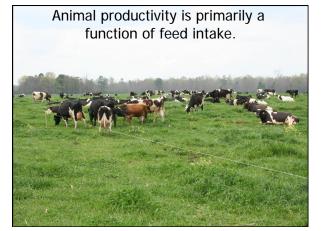


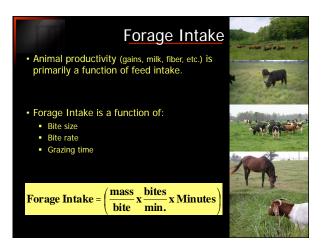



Manipulating forage growth and grazing behavior

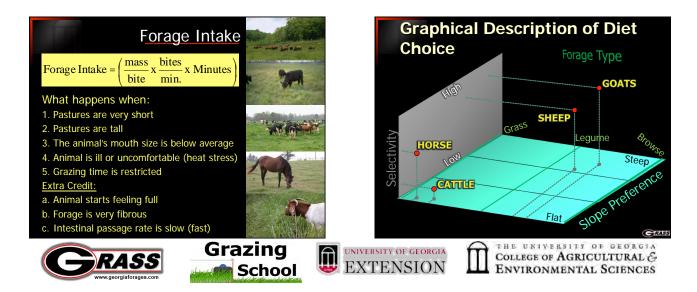


Dr. Dennis Hancock Prof. & Forage Ext. Specialist

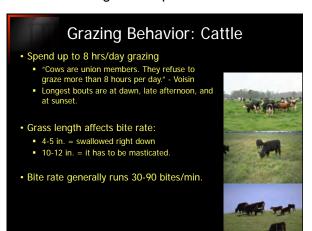

Manipulating forage growth and grazing behavior



Dr. Dennis Hancock Prof. & Forage Ext. Specialist


Benefits of Rational Grazing

- 1. Better utilization of forage
- 2. Growth rate of forage is optimized
 - Kept in linear/exponential growth phase
 - Higher yield of forage


GRA

Manipulating forage growth and grazing behavior

Dr. Dennis Hancock Prof. & Forage Ext. Specialist

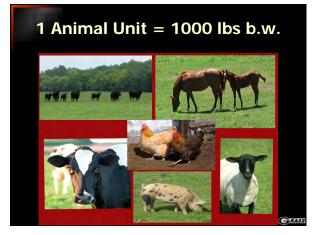
Grazing Behavior: Cattle

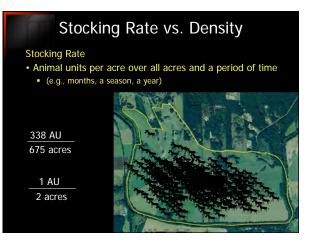
Grazing time is genetically influenced.

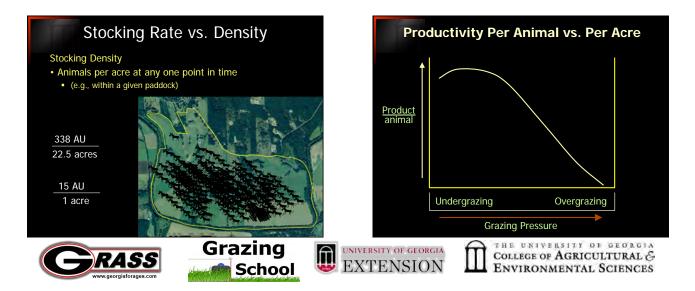
- Identical twins graze almost exactly the same amount of time (+/- 2%), but differences between pairs of twins will differ (+/-40%).
- Bite rate is relatively constant (48-54 bites/ min.), but some graze longer and sustain high rate longer.
- Implication: Good grazers can be selected

Grazing objectives:

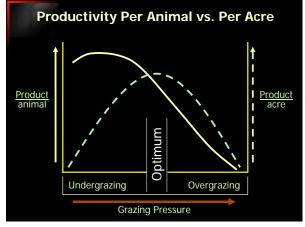
- Exercise and activity
- Eat and retreat
- Meet nutritional needs
- Maintain relatively full gut


4


Manipulating forage growth and grazing behavior



Dr. Dennis Hancock Prof. & Forage Ext. Specialist



Manipulating forage growth and grazing behavior

Dr. Dennis Hancock Prof. & Forage Ext. Specialist

Benefits of Rational Grazing Better utilization of forage Growth rate of forage is optimized

- Kept in linear/exponential growth phase
 Higher yield of forage
- 3. Higher stocking rates

Benefits of Rational Grazing

- 1. Better utilization of forage
- 2. Growth rate of forage is optimized
 - Kept in linear/exponential growth phaseHigher yield of forage
- 3. Higher stocking rates
- 4. More animal gains/milk production per acre

Effects of rotational stocking on performance of beef cattle grazing bermudagrass and endophyte-free tall fescue in central Georgia.

Item	Continuous	Rotational	Difference*
Cow weight at calving, lbs	1037	1017	NS
Cow weight at weaning, lbs	1090	1071	NS
Stocking rate, cows/acre	0.50	0.69	+38%
Pregnancy rate, %	93	95	NS
Weaning weight, lb	490	486	NS
Calf production, lb/ac	243	334	+37%
* NS = not statistically significa	int		
			G

in gain por acro in rotational compared

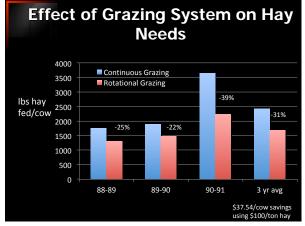
Grazing

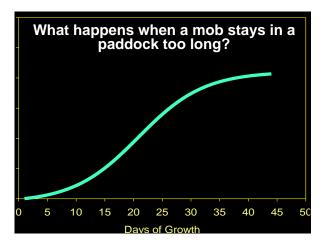
School

Increase in gain per acre in rotational compared to continuous stocked pastures in studies from various southern states.

State	% Increase
Arkansas	44
Georgia	37
Oklahoma	35
Virginia	61

Benefits of Rational Grazing

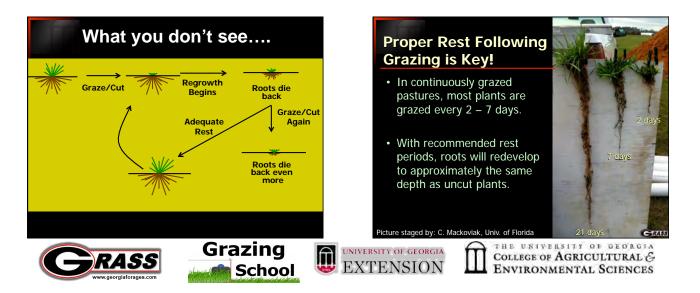

- 1. Better utilization of forage
- 2. Growth rate of forage is optimizedKept in linear/exponential growth phaseHigher yield of forage
- 3. Higher stocking rates
- 4. More animal gains/milk production per acre
- 5. Reduced feeding of conserved forage or supplements



COLLEGE OF AGRICULTURAL & ENVIRONMENTAL SCIENCES

Manipulating forage growth and grazing behavior

Dr. Dennis Hancock Prof. & Forage Ext. Specialist



Benefits of Rational Grazing

- 1. Better utilization of forage
- 2. Growth rate of forage is optimizedKept in linear/exponential growth phaseHigher yield of forage
- 3. Higher stocking rates
- 4. More animal gains/milk production per acre
- Reduced feeding of conserved forage or supplements
- 6. Better persistence of desirable foragesEspecially clover and legume species

GRAS

Manipulating forage growth and grazing behavior

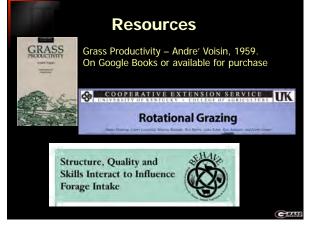
	Target Height (inches)		Recommended
Сгор	Begin Grazing	End Grazing*	Rest Period (days)
Alfalfa (grazing types)	10-16	2-4	15-30
Annual Ryegrass	6-12	3-4	7-25
Bahiagrass	6-10	1-2	10-20
Bermudagrass	6-12	2-6	10-20
Clover, White	6-8	1-3	7-15
Clovers, Other	8-10	3-5	10-20
Orchardgrass	8-12	3-6	15-30
Pearl millet	20-24	8-12	10-20
Small grains	8-12	4	7-30
Sorghum/sudan	20-24	8-12	10-20
Switchgrass	18-22	8-12	30-45
Tall Fescue	4-8	2-3	15-30

Dr. Dennis Hancock Prof. & Forage Ext. Specialist

p	eriod ("leng	th of roun	ni stubble he d") on carbo ms/stolons.	
1	Stubble -	<u>Rest Pe</u>	riod or "Ro	<u>und" (d)</u>
	Height	14	21	28
	in.		(g TNC/m²) -	
	3			
	6			
	9			
-	* Adapted from L carbohydrates.	iu et al., 2011. C	rop Sci. TNC = Tota	al non-structural

Management of residual stubble height and rest period ("length of round") on effective Tifton 85 **yields**.*

Stubble - Height	14	<u>riod or "Ro</u> 21	28
in.	(Ibs/acre)		
3			
6			


totals (3-yr avg.) and include only that forage above the managed residual stubble height. SH did not affect CP or IVOMD. Both CP and IVOMD dec. (L from 60.2% to 58.2%) as rest inc. from 14 to 28 d.

Benefits of Rational Grazing

- 1. Better utilization of forage
- 2. Growth rate of forage is optimizedKept in linear/exponential growth phaseHigher yield of forage
- 3. Higher stocking rates
- 4. More animal gains/milk production per acre
- 5. Reduced feeding of conserved forage or supplements
- 6. Better persistence of desirable foragesEspecially clover and legume species
- 7. Better weed suppression

Manipulating forage growth and grazing behavior

Dr. Dennis Hancock Prof. & Forage Ext. Specialist

THE UNIVERSITY OF GEORGIA COLLEGE OF AGRICULTURAL ENVIRONMENTAL SCIENCES