

UNDERSTANDING FORAGE QUALITY

Jennifer J. Tucker, Ph.D Assistant Professor Department of Animal and Dairy Sciences University of Georgia – Tifton

- Overview of forage quality
- Taking a Forage Sample
- Reading a forage quality analysis

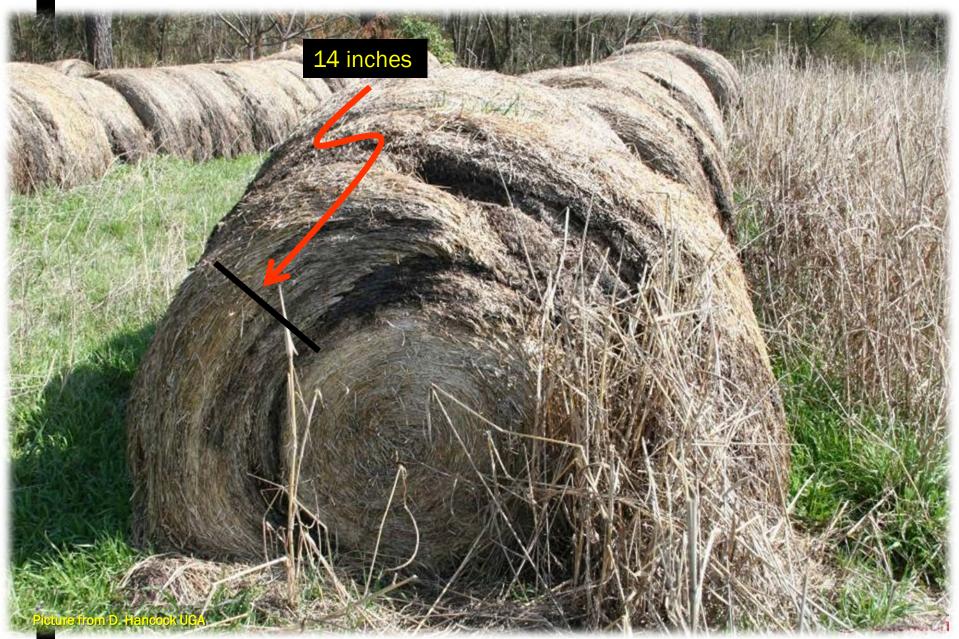
Forage Quality has High Value Now

Supplementing a Lactating Beef Cow

Сгор	Maturity
Bermudagrass	4 weeks
	6 weeks
	8 weeks
Tall Fescue	Late boot
	Early head
	Dough

Assuming 50:50 corn gluten:soy hulls supplementation for forage quality on low end of the range. Approximate prices for Oct. 2013 (\$230/ton).

Maturity Matters


Forage Quality Parameters for Selected Forage Crops

			0	- 1	
Crop	Maturity	СР	TDN	NDF	ADF
Bermudagrass					
	4 weeks old	10-12	52-58	33-38	63-68
	8 weeks old	6-8	45-50	40-45	70-75
Alfalfa					
	Bud	22-26	64-67	28-32	38-47
	Early Flower	18-22	64-64	32-36	42-50
	Mid Bloom	14-18	58-61	36-40	46-55
	Full Bloom	9-13	50-57	41-43	56-60
Ryegrass					
	Vegetative – Boot	12-16	63-68	27-33	47-53
	Boot – Head	8-12	59-63	33-39	53-59
Red Clover					
	Early-Flower	14-16	64-67	28-32	38-42
	Late Flower	12-14	59-64	32-38	42-50
Source: Adapted	from J.C. Henning and G.D. Lacefie	eld, University	of Kentuck	y (UG extens

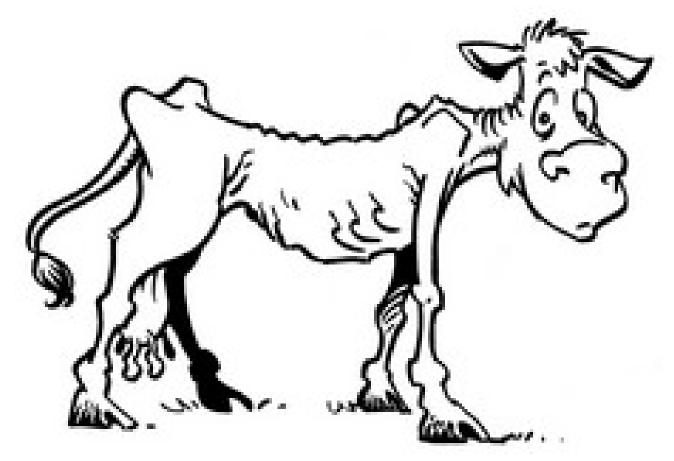
How good is this hay?

Crude Protein = 13.5%

74% of the bale LOST!

Crude Protein and Hay Quality

CP is the most overrated measure of quality!

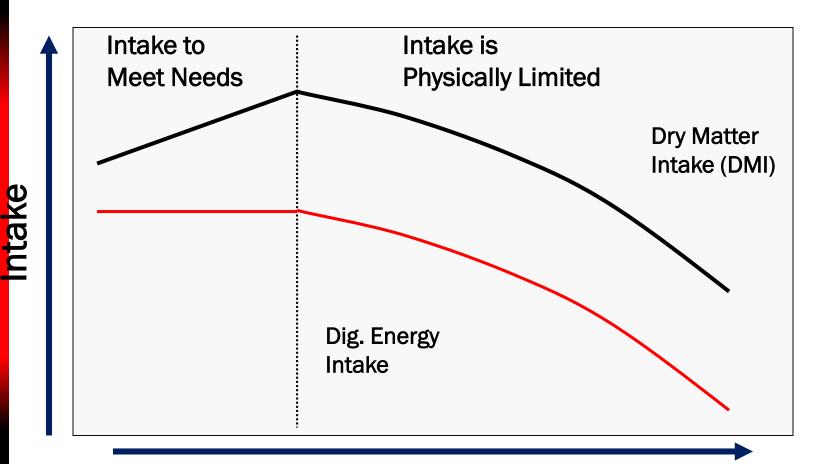

- Total N x 6.25 = CP, %
- Tells you nothing about the form nitrogen is in
 - Protein (AA), Bound Protein, Nitrates etc.
- Protein requirements are (typically) easily met
- Somewhat related to maturity

Tells you very little about energy content

Important-just overemphasized

"Low Carb, High Fat" -

do our cattle want that?



How do we get enough energy in the animal?

- The animal eats more forage.
 - What is the physical limit?
 - Can a cow eat enough straw to meet her energy needs?
- What forage the animal eats must be high in energy.
 - High digestibility -> High energy
- Bottomline: Every bite has to count!

The Relationship between Fiber (NDF) and Dry Matter Intake (DMI)

Fiber (NDF) Level

HIGH Digestibility

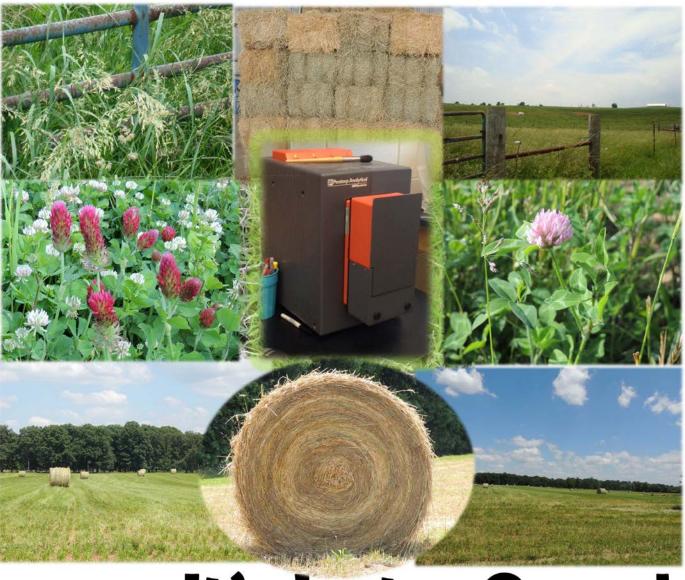
LOW Digestibility

Source: D Hancock, UGA

What is "High Quality Forage"?

- Results in high intake
 - Consumed in large amounts
 - High DMI
- Is digestible
 - Large amounts of nutrients
 - High TDN
- Contains proper balance of needed nutrients

Relative Forage Quality (RFQ) = TDN * DMI/1.23



Matching Animal Requirements and Forage Quality

Stage of Production	TDN % Required	CP % Required	
Dry Pregnant	48	7	
Peak Lactation	60	12	
Late Lactation	55	9	

Unless you Test...

The least used and least understood element of a good forage management plan.

FORAGE SAMPLING DO'S AND DON'T'S

Obtaining a Representative Sample

Grab Sampling

Tools For Taking a Forage Sample

Use the proper tools!

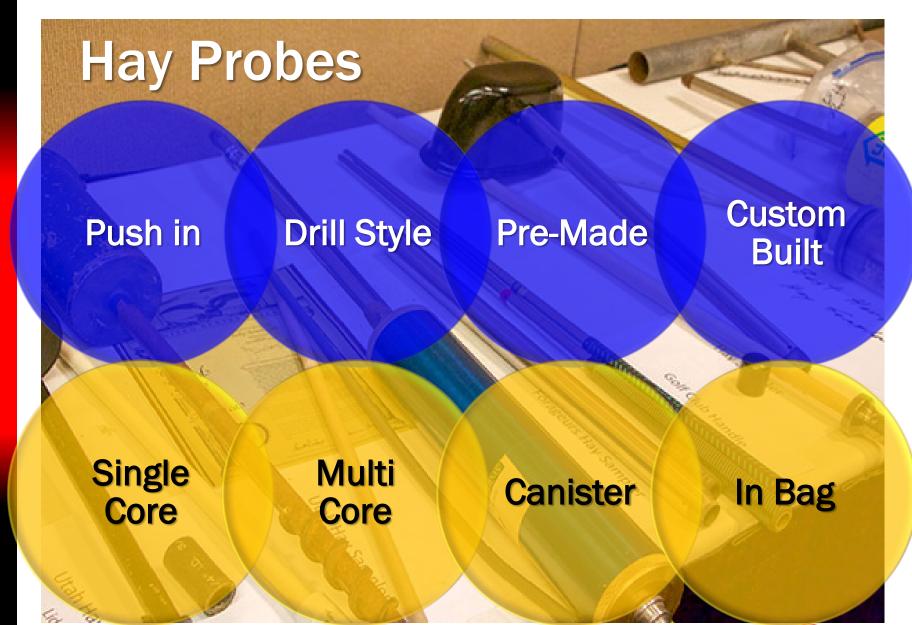


Photo credit: Progressive Forage

Push in

Penn State Probe-Single

Colorado Hay Probe - Multi

Push in

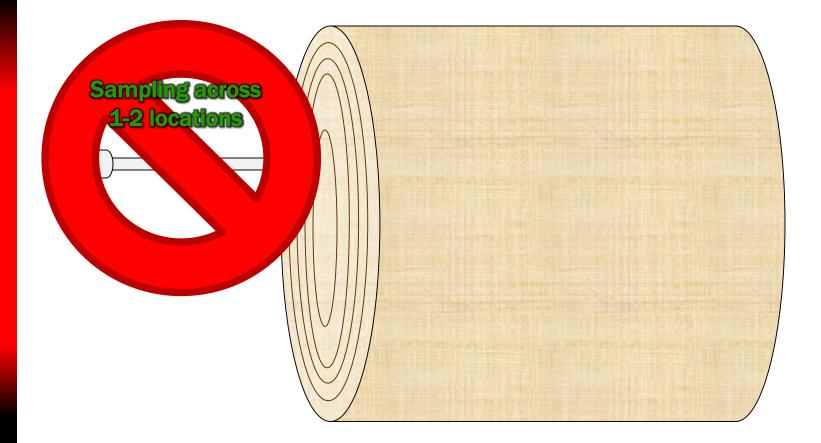
Star Quality Samplers

Photo credit: starqualitysamplers.com

Drill Type

Penn State Probe

Star Quality Samplers



Custom built

Which way do we cut?

Which way do we cut?

Cut Across Windrows

How To Take a Forage Sample

- Sample from each field AND cutting ("Lot" of hay).
- Use bale corer to get a representative sample from 20 bales per lot.
 - Insert the sampler fully and crossways to the stems.

How To Take a Forage Sample

- Fill a clean quart-size plastic bag with about 1/2 lb of forage.
- Label each bag with details.
- Send to an accredited lab (National Forage Testing Association), such as the UGA Feed and Environmental Water Lab.
 - For details, see the FAQ page on <u>www.georgiaforages.com</u>

Do:

- Use the proper tools
- Cut across the windrow
- Sample each "lot" separately
- Randomly select which bales to sample

Don't:

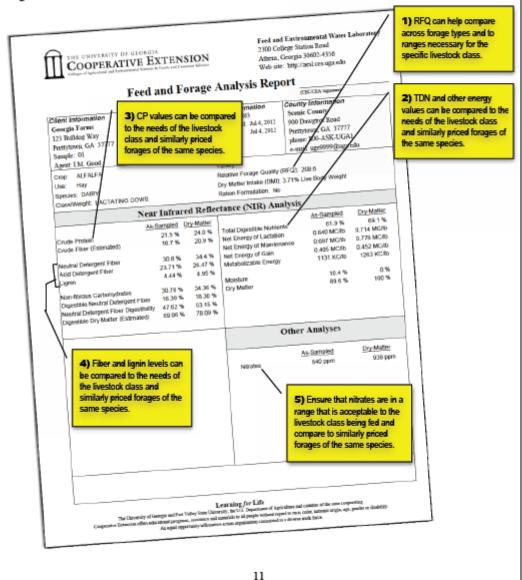
- Grab Sample
 Cut into a windrow
 Combine all samples into one analysis
- Select only the best "looking"
 bales

Other Tips and Tricks

- Get a Good Drill with a GOOD battery
- Buy extra tips/adapters OR have a way to sharpen/fix them

Jou can do it... just put your-hips into it!

Reading a Forage Quality Analysis


Nutritive Value

- The potential for supplying nutrients
 - *i.e Nutrient concentration, digestibility, and end-products*
- Nutrient concentration can be determined through lab analysis
 - Wet Chemistry (Van Soest)
 - Near Infrared Reflectance Spectroscopy (NIRS)
 - Crude Protein, Acid Detergent Fiber, Neutral Detergent
 Fiber, and In-vitro Dry Matter Digestibility

Highlights of a Forage Quality Analysis Report

There is a lot of useful information on a forage analysis report. However, it can be daunting. Highlighted below are the five key aspects of a forage analysis report. In nearly all situations, focus should be placed on the values in the "Dry-Matter" basis column. Because moisture can vary across a wide range, using the DM basis will allow for more of an "apples-to-apples" comparison. Furthermore, the DM percentages and concentrations are the values used by most nutritionists when developing rations and determining the economic value of a forage lot.

Pg. 11

Important Uses Involved in Ration Estimating Analytical Nutritional Energy Metric Abbrev. Units Method Balancing Diagnostics **Estimates DM Intake** Standard Procedures NIR Relative Forage Quality¹ RFQ unitless Crude Protein CP % NIR, WC х х Х Crude Fiber² CF NIR % Neutral Detergent Fiber NDF % NIR, WC Х Х Х x Acid Detergent Fiber ADF % NIR, WC х Lignin % NIR, WC NIR **Total Digestible Nutrients** TDN % Х Х Х Х Net Energy of Lactation Mcal/lb NIR NE х х Х Net Energy of Maintenance NE_m Mcal/lb NIR х Х Х Net Energy of Gain NE_{g} Mcal/lb NIR Х Х Х Metabolizable Energy ME kcal/lb NIR х х Х Moisture Oven % Dry Matter³ DM % Oven Х Mineral Analyses Phosphorus Ρ % ICP х Х Potassium Κ % ICP Х Х Calcium % ICP Са Х Х Mg % ICP Magnesium х Х Manganese Mn PPM ICP Х Х PPM ICP Fe Iron х х Aluminum PPM ICP AI х х PPM Copper Cu ICP Х Х PPM Zn ICP Zinc х х Sodium Na PPM ICP х х Other Analyses Total Fat % WC х Х Nitrates⁴ NO₃-N PPM WC Х Х Ash % Oven Sulfur S % ICP Х Ar PPM ICP Arsenic Х Selenium Se PPM ICP Х Х % NIR **Bound Protein** х pН unitless WC х Salt % WC Х

WC

Х

ppb

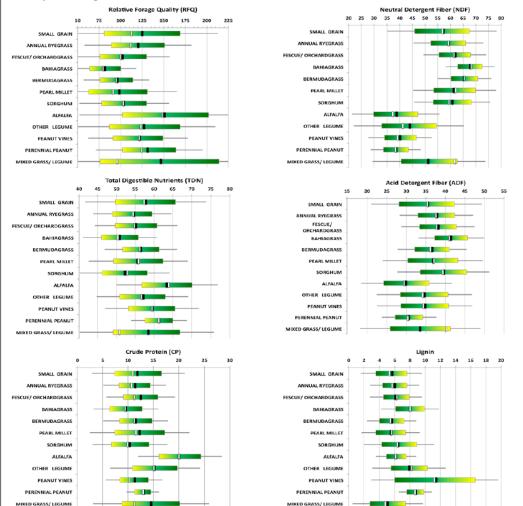

Total Alfatoxin⁴

Table 2. Summary of the primary uses of the forage quality metrics specified on reports from the University of Georgia's Feed and Environmental Water Laboratory.

Forage Quality of Major Southern Forages: Summary Statistics

Figure 11 provides a graphical summary of the statistics on over 16,000 forage samples that were submitted to the University of Georgia's Feed and Environmental Water Lab between July 2003 – February 2011. To better understand how a particular forage lot compares to others, compare the data on the report to the summary statistics provided here.

Figure 11. The average (black vertical lines), median (white vertical lines), typical expected¹ range (color bars), and the extent² of what is commonly low or high for a species (extent of horizontal gray lines) for RFQ, TDN, CP, NDF, ADF, and lignin in samples of various forage species submitted to the UGA Feed and Environmental Water Laboratory during July 2003 – February 2011.

¹ One standard deviation about the mean.

Pg. 15

² Two standard deviations about the mean.

Fiber Factors

Acid Detergent Fiber (ADF)

- Lignin, Cellulose, and Ash (silica)
- Not hemicellulose
- Is a good indicator of <u>digestibility</u> of a forage

Higher ADF = Lower Digestibility

- Includes all cell wall material
- ADF + Hemiceullose
- Is a good indicator or the intake potential of a forage

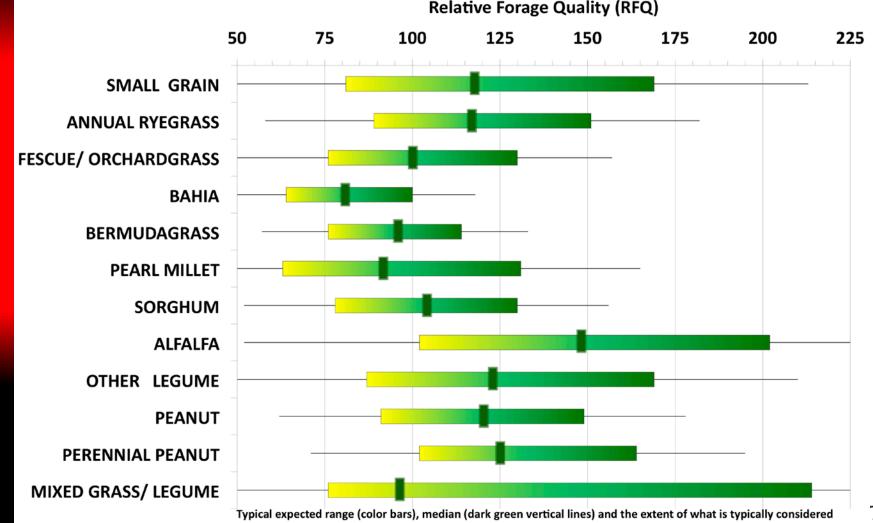
Higher NDF = Lower Intake Potential

RFQ Simplifies Comparisons

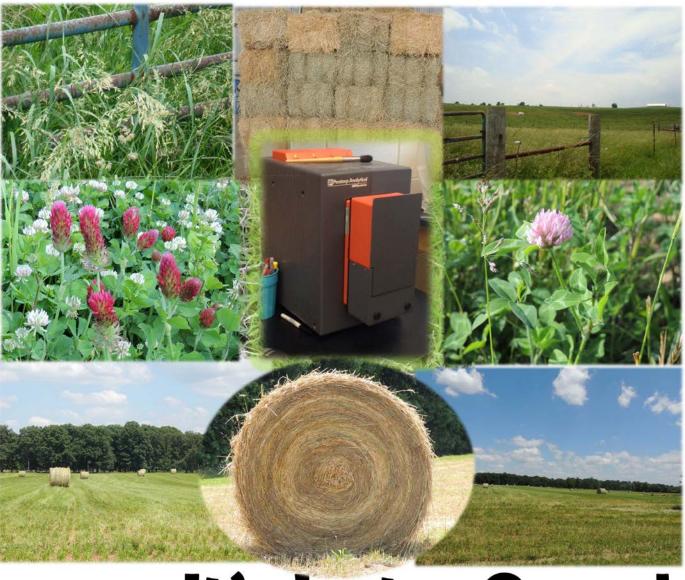
- Relative Forage Quality
 - Predicts energy based on fiber quality and intake
- Combined into a single value
 - RFQ of 100 is ~ = to fullbloom alfalfa
 - RFQ allows comparisons to be made across forage species

RFQ Simplifies Comparisons

- Relative Forage Quality
 - Predicts energy based on fiber quality and intake
- Combined into a single value
 - RFQ of 100 is ~ = to fullbloom alfalfa
 - RFQ allows comparisons to be made across forage species
 - Allows hay to be easily assigned to appropriate physiological stages



Adapted from Undersander et al., 2011


Typical Range in Quality of Common Forages

Typical expected range (color bars), median (dark green vertical lines) and the extent of what is typically considered exceptionally low or high for a species (extent of horizontal black lines represents two std. dev. away from the mean). Based on statistic from samples submitted to the UGA FEW Lab between July 2003 – February 2011.

Unless you Test...

Questions?

www.georgiaforages.com

www.ugabeef.com

1-800-ASK-UGA1

