

Covers Vary in O₂ Permeability

	O ₂ Trans. Rate	Contraction of the local division of the loc
(mil)	(100% O ₂ cm³/ m²/24 h)	S.M.
5.0	1,811	-
7.0	710	Part I
1.6	5,293	24
1.6	5,982	the particular
1.8	30	1
chigan State Univ.	, School of Packaging	
ap 0.5-0.7	~10,000	
	5.0 7.0 1.6 1.6 1.8 chigan State Univ.	m²/24 h) 5.0 1,811 7.0 710 1.6 5,293 1.6 5,982 1.8 30 chigan State Univ., School of Packaging

www.georglaforages.com

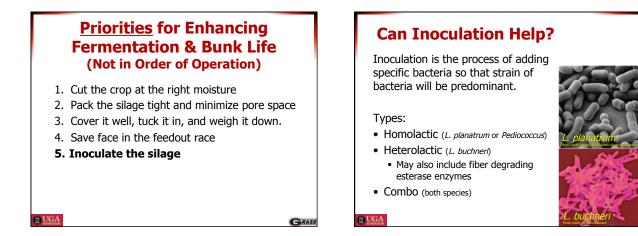
Inoculants and Silage Wrap Application

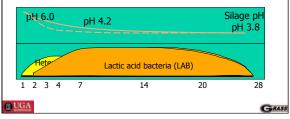
Application Amount – Inline Wrapper

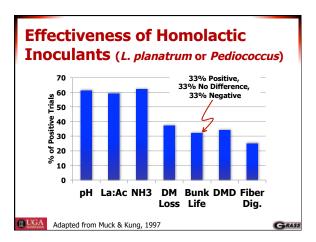
- Eight+ layers (+ double on joints)
 12.5 16.7% overlap
- two rolls rotating around bales
- Pre-stretched to 50-70%
- Tacky side towards the bale
- 60-80+ bales per hour

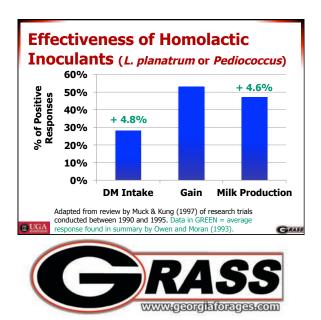
Application Amount – Ind. Wrapper

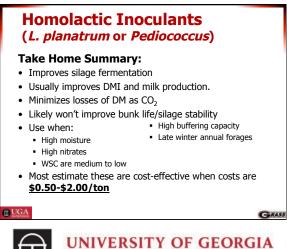
- Six + layers (2 + 2 + 2 system)
 50% overlap
 - 50% overlap
 Three full bale rotations
- If short term, 4-layers may be ok
- 15-40 bales per hour



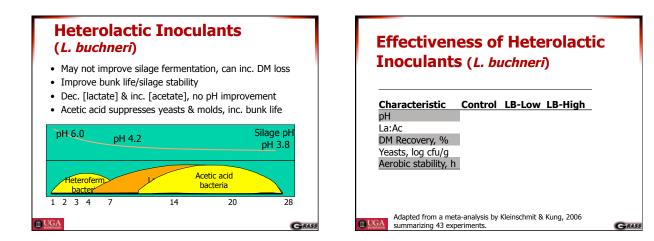


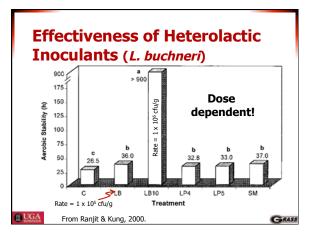

Inoculants and Silage Wrap Application

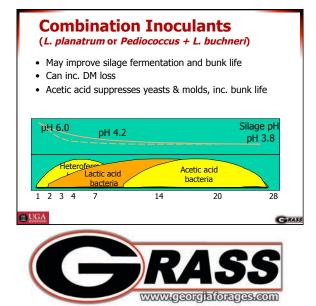


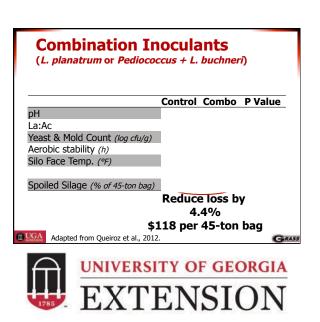

Homolactic Inoculants (L. planatrum or Pediococcus)

- Improve silage fermentation
- May not improve bunk life/silage stability
- Inc. rate of lactic acid formation = more rapid pH drop
- Minimizes losses of DM as CO₂








Inoculants and Silage Wrap Application

Characteristic	Control	LB-Low	LB-High
Н	3.70	3.75	3.88
a:Ac	3.02	2.23	1.23
M Recovery, %	95.5	95.5	94.5
easts, log cfu/g	4.18	3.1	1.88
erobic stability,	h 25	35	503

Inoculants and Silage Wrap Application

Combination Inoculants (<i>L. planatrum</i> or <i>Pediococcus + L. buchneri</i>)					
	Control	Combo	P Value		
pН	3.99	3.91	0.01		
La:Ac	2.53	1.58	0.08		
Yeast & Mold Count (log cfu/g)	4.62	2.59	0.01		
Aerobic stability (h)	9.5	14.7	0.71		
Silo Face Temp. (°F)	97.2	94.6	0.42		
Spoiled Silage (% of 45-ton bag)	7.83	3.39	< 0.01		
		loss by			
4.4%					
\$:	118 per 4	45-ton b	bag		
Adapted from Queiroz et al., 2012	2.		GR		

Silage after 5 d aerobic exposure (Filya, 2003) CO₂ Yeast Mold Forage Treatment Production % of DM ount Count log cfu/g DM pН Count 6.5 Corn Untreated 6.1 2.55 3.3 L. plantarum 5.8 4.76 7.7 2.8 L. buchneri 4.2 0.41 <2.0 <2.0 Both 4.8 0.70 2.0 < 2.0 UGA extension GRASS

Silage after 5 d aerobic exposure (Filya, 2003)							
Forage	Treatment	pН	CO ₂ Production	Yeast Count	Mold Count		
			% of DM	log cfu/g DM			
Corn	Untreated	6.1	2.55	6.5	3.3		
	L. plantarum	5.8	4.76	7.7	2.8		
	L. buchneri	4.2	0.41	<2.0	<2.0		
	Both	4.8	0.70	2.0	<2.0		

2.94

3.73

0.46 0.68

3.16

4.53

0.54

0.88

6.8

8.1

<2.0

2.2

7.6

8.4

<2.0

2.6

3.5

<2.0

3.7

3

<2.0

<2.0

GRASS

3.1

<2.0

4.9

5.3

3.9

4.1

6.4

6.4

4.3

4.6

Wheat

1 UGA

Untreated

L. plantarum

L. buchneri

L. plantarum

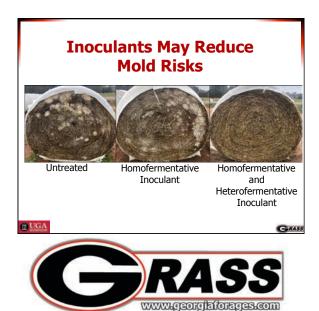
L. buchneri

Both

Both

Sorghum Untreated

Heterolactic & Combination Inoculants (L. buchneri or combos)


Take Home Summary:

- Improves bunk life/silage stability
- Use when: Diseased
 - For summer feeding
 - Drought-stressed Winter annual forages

GRASS

- WSC are high
- Wide face, slow feedouts • May not increase performance, but should reduce
- spoilage and therefore maintain performance
- Most estimate these are cost-effective when costs are \$0.50-\$2.00/ton if heterolactic (L. buchneri) only
- <\$3/ton for combo products

UGA

EXTENSION

Inoculants and Silage Wrap Application

Selecting and Using Inoculants

- Use an inoculant labeled for your crop (strain specific)
- Apply at least 100,000 cfu/g
- Wet or dry? Either can work
 - Wet products are easier to deal with
 - Wet more effective if dealing with
- crop that is on the dry side • Avoid chlorine when mixing
- Sensitive at 1 ppm Cl⁻
- Keep inoculant < 100 °FFollow the directions

