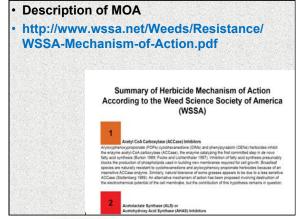

The Uptake, Mode of Action, and Fate of Herbicides in Hayfields

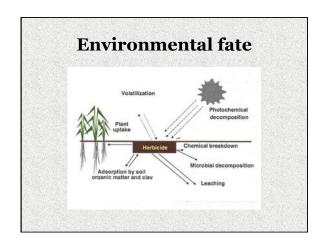

Mode of Action - Terminology

- Mode of Action:
 - How a particular herbicide acts on a plant
 - Response of plant to phytotoxic effects of the herbicide
 - How the plant responds to the herbicide

Mode of Action

- Primary Mechanism of Action: plant processes affected by lowest phytotoxic dose of herbicide.
- Secondary Mechanism of Action: other plant processes affected by herbicide.

Herbicide Mode of Action - WSSA


- · Group herbicides by plant processes affected:
 - Acetyl CoA Carboxylase Inhibitors (1) sethoxydim
 - Amino acid synthesis inhibitors (2) SU's, IMI's
 - Microtubule assembly inhibition (3) pendimethalin
 - Photosynthetic inhibitors (5, 6, 7, 22) diuron, paraquat, metribuzin
 - EPSP synthesis (9) glyphosate
 - PPO (14) flumioxazin

The Uptake, Mode of Action, and Fate of Herbicides in Hayfields

Question

- · What happens to herbicides?
- How do these and other herbicides dissipate when applied?
- Limited information in forages
- · We know the properties

1 - ACCase

Acetyl CoA Carboxylase Inhibitors

- Grass herbicides that we use in legumes many times
- Inhibit lipid production
- POST applied
- FOPS & DIMS
- sethoxydim
- Poast
- Resistance issues!!!
- · No to low residual

2 - Amino acid inhibitors

- essential building blocks for plant growth and function
- · unlike animals, plants make their own
- amino acids are the primary components of proteins and nucleic acids
- proteins are generally storage proteins or enzymes

2 - Amino Acid Inhibitors

- generally target a specific enzyme
 - Some block vital steps in the formation of amino acids- proteins, enzymes
 - branched chain amino acid inhibitors
 - · Leucine, Isoleucine, Valine
- · dependent on plant growth for activity
 - better growth better control, slow death
- · systemic herbicides
- · Soil activity
 - None (imazamox)
 - Some (Metsulfuron, nicosulfuron)
 - Long activity (imazapic)

Imazethapyr - imazapic Nyleaf morningglory Johnsongrass

The Uptake, Mode of Action, and Fate of Herbicides in Hayfields

ALS Inhibitors

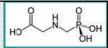
- Imidazolinones
 - Imazapic (Impose)
 - Imazamox (Raptor)
 - Imzethapyr (Pursuit)
- Sulonylureas
 - sulfosulfuron
 - Nicosulfuron + metsulfuron (Pastora)
 - Many others

Organic matter & clay

- Positive correlation between sorption & organic matter content
 - † OM increase, sorption increase
- Alkaline soils with low OM
 * SU degrade slowly
- · Sulfosulfuron, chlorsulfuron reported
- Clay mineral sorption varies from none to some

Leaching

- · SU herbicides can be mobile in soil
 - **Experiments have demonstrated**
- · R_f values from 0.21 to 0.9
 - † Chlorsulfuron
 - † Metsulfuron
 - † Sulfometuron
- Primarily dependent on soil type & characteristics – pH, OM, etc.
- Never been a major concern low rates


SU facts

- · Most all are formulated as WP or DG
- Photolysis minor
- Volatilization minor
- Can move upward even when they were not previously detected
 - · via capillary soil water flow

Conclusions · ☐ soil pH ☐ SU persistence · ☐ temperature ☐ soil dissipation

- oil OM content plant availability
- Low use rates combined with factors above
- · Low leaching potential

9 – EPSP synthase Glyphosate

- · broadspectrum postemergence weed control
- · glyphosate labeled in multitude of areas
- extensively translocated throughout the plant, extremely stable in plant
- · blocks synthesis of aromatic amino acids
- · Very good for perennial species
- · Weeds: Nonselective
- Used in renovation and dormant bermudagrass
- · Dissipation via adsorption & microbial

The Uptake, Mode of Action, and Fate of Herbicides in Hayfields

3, 15, 23 Microtubule growth Inhibition

- plants grow by making new cells
 process of cell division, mitosis
- plants are particularly susceptible as emerging seedlings
 - both shoot and roots
- newly forming roots can be susceptible at most stages of plant growth

Microtubule growth Inhibition

- most growth inhibition herbicides are soil applied and generally affect seedling weeds
- most interfere w/ mitosis (mitotic poisons)
- others appear to prevent lipid (cell membrane) production
- · some prevent cell wall formation
- · soil active, little movement once absorbed

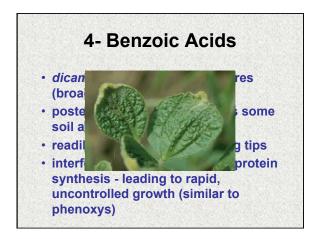
Microtubule growth Inhibition

- benefin PPI or PRE with irrigation
 Balan
- pendimethalin PRE
 Prowl
- soil applied annual grasses and certain broadleaf weeds
- · vary in volatility and photodegradation
- prevent both root and shoot growth, inhibit cell division (mitosis)
- · Very effective on small seeded weeds
- Plants cannot take up water-nutrients starve

Microtubule growth Inhibition

4 – PGRs (plant growth regulators)

- · 2,4-D, 2,4-DB, dicamba and more......
- BL weed control for a variety of crops (corn, pastures, legumes) and noncropland
- Cotton & tomato very sensitive ppb range
- · foliar & root uptake- extensive translocation
- interferes with nucleic acid (DNA and RNA) and protein synthesis; cells undergo rapid uncontrolled division and elongation



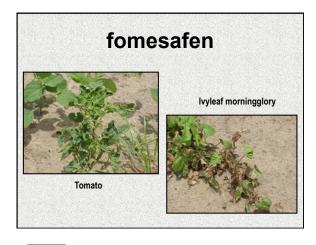
2019 Baleage and Silage Short Course:

The Uptake, Mode of Action, and Fate of Herbicides in Hayfields

Dr. Tim Gray UGA Prof. and Research Weed Scientist

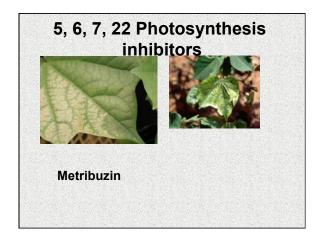
Growth Regulator Herbicides

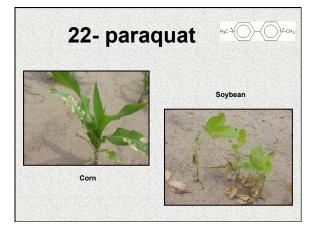
- Phenoxys
 - -2,4-D
- Benzoics
 - -dicamba
- Pyridines
 - -clopyralid
 - -triclopyr
 - -fluroxypyr

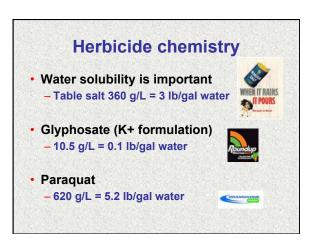

14 - PROTOX Inhibitors

- Biological activity
 Made of patient
 - Mode of action -PPO or PROTOX inhibitors, contact action
 - require light for activity
 - Selectivity metabolism

14 - PROTOX Inhibitors


- PRE & POST applied
- Depends on the chemistry
 - Flumioxazin (Chateau)
 - Carfentrazone (Aim)
- Flumioxazin residual, rate dependent
- · Carfentrazone no residual activity




The Uptake, Mode of Action, and Fate of Herbicides in Hayfields

Photosynthesis inhibitors

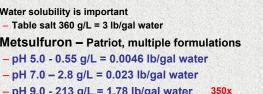
- · Biological activity
 - Photosynthesis (PS I & II) inhibitors
 - readily absorbed by plant roots and translocated to leaves via transpiration stream
 - Selectivity based on metabolism
- Dissipation
 - Microbial
 - Hydrolysis
 - Soil & OM absorption
- pH affects availability, increase pH, increase activity
- Metribuzin, WSSA Group 5

Herbicide chemistry pH and temperature effects

- · Water solubility is important
- Metsulfuron Patriot, multiple formulations

 - pH 9.0 213 g/L = 1.78 lb/gal water
- Carfentrazone
 - -68 F 12 g/L = 0.1 lb/gal water
 - 86 F 23 g/L = 0.22 lb/gal water

UNIVERSITY OF GEORGIA EXTENSION


Water solubility is important

· Tank cleanout!!!

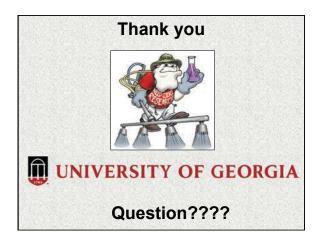
Flumioxazin –

Table salt 360 g/L = 3 lb/gal water

-0.00179 g/L = 0.000015 lb/gal

· Low water solubility can lead to issues.....

Herbicide chemistry


2019 Baleage and Silage Short Course:

The Uptake, Mode of Action, and Fate of Herbicides in Hayfields

Dr. Tim Gray UGA Prof. and Research Weed Scientist

Main points

- · Pesticides have to go somewhere!
- · Break down can be rapid in the environment
 - Depends on pesticide molecule chemistry:
 - Volatility
 - Solubility
 - Stability (resistance to photolysis, hydrolysis, etc.)
 - Depends on the environment (moisture, heat)
 - Depends on application method (granule, spray)
- Leaching
 - Need to move into treated soil
 - Do not want to move into ground water

